organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

tert-Butyl 2-hydroxy-3-(4-methylbenzenesulfonamido)butanoate

Mohamed I. Fadlalla,^a Holger B. Friedrich,^a Glenn E. M. Maguire^a and Bernard Omondi^{b*}

^aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and ^bResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: boowaga@uj.ac.za

Received 3 February 2011; accepted 9 February 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.083; data-to-parameter ratio = 20.1.

In the crystal of the title compound, $C_{15}H_{23}NO_5S$, molecules are linked through N-H···O and O-H···O hydrogen-bond interactions, resulting in centrosymmetric dimers in which the N-H···O interactions generate $R_2^2(12)$ rings and the O-H...O interactions generate $R_2^2(14)$ rings. Weak intermolecular $C-H \cdots O$ interactions are also observed.

Related literature

For related structures of β -amino alcohols, see: Lohray *et al.* (2002); Bodkin et al. (2008). For the structures of tosylamino compounds, see: Coote et al. (2008); Liu et al. (2005); Fadlalla et al. (2010). For the synthesis of the title compound, see: Naicker et al. (2008); Govender et al. (2003). For hydrogenbond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data C15H23NO5S $M_r = 329.4$ Triclinic. $P\overline{1}$ a = 9.6038 (8) Å b = 9.9059 (8) Å c = 10.1064 (11) Å $\alpha = 119.342(2)^{\circ}$ $\beta = 92.307 (2)^{\circ}$

 $\gamma = 93.422 \ (2)^{\circ}$ $V = 833.95 (13) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 100 K $0.22\,\times\,0.18\,\times\,0.14$ mm

Data collection

24635 measured reflections
4192 independent reflections
3712 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$vR(F^2) = 0.083$	independent and constrained
S = 1.05	refinement
192 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
209 parameters	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} \hline N1 - H1D \cdots O2^{i} \\ O3 - H3 \cdots O4^{i} \\ C1 - H1C \cdots O4^{ii} \end{array} $	0.842 (16)	2.059 (16)	2.8625 (12)	159.5 (14)
	0.84	2.40	3.2041 (12)	162
	0.98	2.54	3.4936 (14)	164

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 2.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from Mintek and THRIP is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2795).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bodkin, J. A., Bacskay, G. B. & McLead, M. D. (2008). Org. Biomol. Chem. pp. 2544-2553.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299-4314.
- Fadlalla, M. I., Friedrich, H. B., Maguire, G. E. M. & Omondi, B. (2010). Acta Crvst. E66, 03279-03280.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Govender, M., Friedrich, H. B., Makhoba, X., Ngcobo, T. D. & Onani, M. O. (2003). Chem. Commun. pp. 2922-2923.
- Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023-1025.

Lohray, B. B., Thombare, P. S. & Bhushan, V. (2002). PINSA, 68A, 391-1073. Naicker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96-102. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o648 [doi:10.1107/S1600536811004934]

tert-Butyl 2-hydroxy-3-(4-methylbenzenesulfonamido)butanoate

M. I. Fadlalla, H. B. Friedrich, G. E. M. Maguire and B. Omondi

Comment

The aminohydroxylation reaction of alkenes is the most simple, single step reaction in the production of β -amino alcohols. The product (β -amino alcohol) is present in many natural products and biologically active compounds (such as Acranil which is an antiprotozoal drug) (Bodkin *et al.*, 2008, Lohray *et al.*, 2002). Furthermore, β -amino alcohols are utilized in asymmetric catalysis in the synthesis of chiral ligands. As part of investigating new heterogeneous route to the aminohydroxylation reaction to produce β -amino alcohols, we report the crystal structure of the title compound (I). The molecular structure of (I) is related to that of (2,3)-Methyl 2-hydroxy-3-(4-methylbenzenesulfonamido)-3-phenylpropanoate (Fadlalla *et al.*, (2010). Other related structures have been reported by Coote *et al.* (2008) and Liu *et al.*, (2005).

Fig. I shows the asymetric unit of (I). The compound is chiral and has an S chirality at C6 and an *R* chirality at C7. In the crystal, adjacent molecules are connected by a pair of N—H···O and O—H···O hydrogen bonds (Fig. 2) that result in centrosymmetric dimers that can be described by $R_2^2(12)$ and $R_2^2(14)$ graph set notations (Bernstein *et al.* 1995) respectively. In addition, weak C—H···O intermolecular interactions (Table 1) contribute to the stability of the crystal lattice.

Experimental

The title compound (I) was obtained through a modified literature method (Naicker *et al.*, 2008, Govender *et al.*, 2003). To a nitrogen saturated Schlenk tube 6 ml of a mixture of acetonitrile and water (1:1 v/v), *tert*-butylcrotonate (76 μ L, 0.478 mmol), chloramine-T (0.956 g, 0.956 mmol), hydrotalcite-like catalyst (0.03 g) were added in that order. The catalyst was gravity filtered off after 15 h. The reaction mixture was then washed with sodium sulfite (1 g in 20 ml of de-ionized water) followed by 15 ml of ethyl acetate. The aqueous layer was separated from the organic layer and further washed by 3x 15 ml of ethyl acetate. The solvent of the combined organic mixture was removed *in vacuo*. The resulting crude product was purified by preparative high preasure liquid chromatography to yield the title compound as a white solid. Crystals of I were obtained by slow evaporation of a hexane layered solution of the compound in dichloro methane at room temperature (m.p. 142–145 K).

Spectroscopic data: ¹H NMR (400 MHz, CDCl₃, δ . p.p.m.): = 0.9 (d, 3H), 1.5 (s, 9H), 2.4 (s, 3H), 3.2 (d, 1H), 3.8 (m, 2H), 4.7 (d, 1H), 7.3 (d, 2H), 7.7 (d, 2H). ¹³C NMR (100 MHz, CDCl₃, δ . p.p.m.): = 17.9 (s,1 C), 21.5 (s, 1 C), 27.9 (s, 3 C), 51.5 (s, 1 C), 73.6 (s, 1 C), 84.1 (s, 1 C), 126.9 (s, 2 C), 138.6 (s, 1 C), 143.3 (s, 1 C), 171.6 (s, 1 C). IR (cm⁻¹): = 3446 (*m*), (OH), 3260 (*m*), (NH), 2985 (w), 2919 (w), 1598 (w), (ar), 1716 (*m*), (C=O), 1048 (*m*), (S=O). Mass calculated = 329, MS = 351 m/z (*M* + Na).

Refinement

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for

CH₃, C—H = 1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH. N—H = 0.84 Å and $U_{iso}(H) = 1.2U_{eq}(N)$ for N—H and O—H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

. .

Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms have been omited for clarity.

Fig. 2. N—H···O and O—H···O hydrogen bond interactions in the crystal structure of (I). [Symmetry operators: (i) = 1 - x, 1 - y, 1 - z; (ii) = 1 - x, 2 - y, 2 - z]

tert-Butyl 2-hydroxy-3-(4-methylbenzenesulfonamido)butanoate

Crystal data	
C ₁₅ H ₂₃ NO ₅ S	Z = 2
$M_r = 329.4$	F(000) = 352
Triclinic, PT	$D_{\rm x} = 1.312 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.6038 (8) Å	Cell parameters from 24635 reflections
b = 9.9059 (8) Å	$\theta = 2.1 - 28.5^{\circ}$
c = 10.1064 (11) Å	$\mu = 0.22 \text{ mm}^{-1}$
$\alpha = 119.342 \ (2)^{\circ}$	T = 100 K
$\beta = 92.307 \ (2)^{\circ}$	Block, colourless
$\gamma = 93.422 \ (2)^{\circ}$	$0.22\times0.18\times0.14~mm$
$V = 833.95 (13) \text{ Å}^3$	
Data collection	
Bruker X8 APEXII 4K Kappa CCD diffractometer	3712 reflections with $I > 2\sigma(I)$

diffractometer	3712 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
ϕ and ω scans	$\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -12 \rightarrow 12$
$T_{\min} = 0.954, \ T_{\max} = 0.970$	$k = -13 \rightarrow 13$
24635 measured reflections	$l = -13 \rightarrow 13$

4192 independent reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.083$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0395P)^{2} + 0.3237P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4192 reflections	$(\Delta/\sigma)_{\rm max} = 0.005$
209 parameters	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 15 sec/per frame. A total of 3328 frames were collected with a frame width of 0.5° covering upto $\theta = 28.45^{\circ}$ with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.74584 (13)	1.08296 (13)	0.93414 (13)	0.0208 (2)
H1A	0.6562	1.118	0.9193	0.031*
H1B	0.8195	1.1223	0.8942	0.031*
H1C	0.7685	1.1225	1.0431	0.031*
C2	0.87462 (12)	0.84588 (14)	0.86348 (14)	0.0241 (2)
H2A	0.9444	0.8772	0.8132	0.036*
H2B	0.8629	0.7322	0.8145	0.036*
H2C	0.9061	0.8896	0.9712	0.036*
C3	0.61532 (13)	0.83957 (14)	0.90149 (13)	0.0222 (2)
H3A	0.6156	0.7262	0.8517	0.033*
H3B	0.5263	0.8661	0.8736	0.033*
H3C	0.627	0.8836	1.0122	0.033*
C4	0.73538 (11)	0.90605 (13)	0.85019 (12)	0.0165 (2)

C5	0.68030 (10)	0.71782 (12)	0.58068 (12)	0.0145 (2)
C6	0.63194 (11)	0.69956 (12)	0.42678 (12)	0.0151 (2)
H6	0.7064	0.7491	0.3939	0.018*
C7	0.49600 (11)	0.77696 (12)	0.43670 (12)	0.0152 (2)
H7	0.5149	0.891	0.5094	0.018*
C8	0.44465 (12)	0.75423 (15)	0.28179 (13)	0.0223 (2)
H8A	0.3603	0.8085	0.2919	0.033*
H8B	0.4228	0.643	0.2101	0.033*
H8C	0.5178	0.7965	0.2438	0.033*
C9	0.12195 (11)	0.73713 (13)	0.43575 (12)	0.0166 (2)
C10	0.05152 (11)	0.58888 (13)	0.37062 (13)	0.0177 (2)
H10	0.0739	0.5198	0.4067	0.021*
C11	-0.05154 (11)	0.54303 (14)	0.25272 (13)	0.0197 (2)
H11	-0.0984	0.4414	0.2071	0.024*
C12	-0.08741 (11)	0.64442 (15)	0.19995 (13)	0.0209 (2)
C13	-0.01768 (12)	0.79315 (15)	0.26927 (14)	0.0233 (2)
H13	-0.0425	0.8639	0.2362	0.028*
C14	0.08753 (12)	0.84021 (14)	0.38584 (14)	0.0215 (2)
H14	0.1352	0.9413	0.4308	0.026*
C15	-0.19933 (13)	0.59239 (18)	0.07100 (15)	0.0296 (3)
H15A	-0.1592	0.5302	-0.0263	0.044*
H15B	-0.2358	0.6838	0.0733	0.044*
H15C	-0.2756	0.5295	0.0824	0.044*
N1	0.39695 (9)	0.71013 (11)	0.50168 (10)	0.01484 (18)
01	0.70108 (8)	0.86607 (8)	0.68847 (8)	0.01528 (15)
O2	0.69788 (8)	0.60683 (9)	0.59739 (9)	0.01913 (17)
O3	0.60741 (8)	0.53975 (9)	0.31707 (9)	0.01922 (17)
H3	0.6564	0.4879	0.3431	0.029*
O4	0.21687 (9)	0.71817 (10)	0.66814 (9)	0.02355 (18)
O5	0.29082 (9)	0.95624 (10)	0.65376 (10)	0.02641 (19)
S1	0.25877 (3)	0.79036 (3)	0.58022 (3)	0.01691 (8)
H1D	0.3859 (16)	0.6124 (18)	0.4581 (17)	0.025 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0283 (6)	0.0164 (5)	0.0150 (5)	-0.0004 (4)	-0.0005 (4)	0.0059 (4)
C2	0.0216 (5)	0.0238 (6)	0.0233 (6)	0.0015 (4)	-0.0067 (4)	0.0095 (5)
C3	0.0261 (6)	0.0222 (5)	0.0196 (5)	0.0003 (4)	0.0039 (4)	0.0114 (5)
C4	0.0196 (5)	0.0169 (5)	0.0124 (5)	0.0001 (4)	-0.0021 (4)	0.0072 (4)
C5	0.0108 (4)	0.0148 (5)	0.0162 (5)	0.0007 (4)	0.0006 (4)	0.0065 (4)
C6	0.0152 (5)	0.0141 (5)	0.0140 (5)	0.0003 (4)	0.0008 (4)	0.0055 (4)
C7	0.0159 (5)	0.0144 (5)	0.0160 (5)	0.0000 (4)	-0.0002 (4)	0.0083 (4)
C8	0.0221 (5)	0.0290 (6)	0.0201 (5)	0.0010 (4)	-0.0021 (4)	0.0159 (5)
C9	0.0138 (5)	0.0186 (5)	0.0178 (5)	0.0042 (4)	0.0029 (4)	0.0088 (4)
C10	0.0153 (5)	0.0201 (5)	0.0206 (5)	0.0044 (4)	0.0031 (4)	0.0119 (4)
C11	0.0152 (5)	0.0230 (5)	0.0211 (5)	0.0016 (4)	0.0018 (4)	0.0112 (5)
C12	0.0135 (5)	0.0337 (6)	0.0211 (5)	0.0060 (4)	0.0051 (4)	0.0171 (5)

C13	0.0196 (5)	0.0310 (6)	0.0306 (6)	0.0089 (5)	0.0064 (5)	0.0229 (5)
C14	0.0192 (5)	0.0197 (5)	0.0287 (6)	0.0046 (4)	0.0042 (4)	0.0140 (5)
C15	0.0204 (6)	0.0507 (8)	0.0263 (6)	0.0044 (5)	0.0003 (5)	0.0256 (6)
N1	0.0145 (4)	0.0121 (4)	0.0174 (4)	0.0014 (3)	0.0016 (3)	0.0068 (4)
01	0.0187 (4)	0.0130 (3)	0.0129 (3)	0.0001 (3)	-0.0015 (3)	0.0058 (3)
O2	0.0199 (4)	0.0148 (4)	0.0221 (4)	0.0016 (3)	-0.0027 (3)	0.0090 (3)
O3	0.0220 (4)	0.0143 (4)	0.0157 (4)	0.0026 (3)	-0.0009 (3)	0.0031 (3)
O4	0.0227 (4)	0.0316 (5)	0.0163 (4)	0.0011 (3)	0.0028 (3)	0.0118 (4)
05	0.0257 (4)	0.0159 (4)	0.0268 (4)	0.0034 (3)	0.0006 (3)	0.0022 (3)
S1	0.01644 (13)	0.01627 (13)	0.01483 (13)	0.00257 (9)	0.00163 (9)	0.00506 (10)

Geometric parameters (Å, °)

C1—C4	1.5218 (15)	C8—H8B	0.98
C1—H1A	0.98	C8—H8C	0.98
C1—H1B	0.98	C9—C14	1.3921 (15)
C1—H1C	0.98	C9—C10	1.3949 (15)
C2—C4	1.5235 (15)	C9—S1	1.7733 (11)
C2—H2A	0.98	C10—C11	1.3881 (15)
C2—H2B	0.98	C10—H10	0.95
C2—H2C	0.98	C11—C12	1.4012 (16)
C3—C4	1.5245 (16)	C11—H11	0.95
С3—НЗА	0.98	C12—C13	1.3938 (18)
С3—Н3В	0.98	C12—C15	1.5106 (16)
С3—Н3С	0.98	C13—C14	1.3914 (17)
C4—O1	1.4978 (12)	С13—Н13	0.95
C5—O2	1.2115 (13)	C14—H14	0.95
C5—O1	1.3277 (12)	C15—H15A	0.98
C5—C6	1.5244 (14)	C15—H15B	0.98
C6—O3	1.4161 (12)	C15—H15C	0.98
С6—С7	1.5353 (14)	N1—S1	1.6172 (9)
С6—Н6	1	N1—H1D	0.842 (16)
C7—N1	1.4750 (13)	O3—H3	0.84
С7—С8	1.5245 (15)	O4—S1	1.4422 (9)
С7—Н7	1	O5—S1	1.4393 (9)
C8—H8A	0.98		
C4—C1—H1A	109.5	C7—C8—H8B	109.5
C4—C1—H1B	109.5	H8A—C8—H8B	109.5
H1A—C1—H1B	109.5	C7—C8—H8C	109.5
C4—C1—H1C	109.5	H8A—C8—H8C	109.5
H1A—C1—H1C	109.5	H8B—C8—H8C	109.5
H1B-C1-H1C	109.5	C14—C9—C10	120.57 (10)
С4—С2—Н2А	109.5	C14—C9—S1	120.59 (9)
С4—С2—Н2В	109.5	C10—C9—S1	118.82 (8)
H2A—C2—H2B	109.5	C11—C10—C9	119.49 (10)
C4—C2—H2C	109.5	C11—C10—H10	120.3
H2A—C2—H2C	109.5	С9—С10—Н10	120.3
H2B—C2—H2C	109.5	C10-C11-C12	120.95 (11)
С4—С3—Н3А	109.5	C10-C11-H11	119.5

С4—С3—Н3В	109.5		C12-C11-H11		119.5
НЗА—СЗ—НЗВ	109.5		C13—C12—C11		118.43 (10)
С4—С3—Н3С	109.5		C13—C12—C15		121.30 (11)
НЗА—СЗ—НЗС	109.5		C11—C12—C15		120.27 (11)
НЗВ—СЗ—НЗС	109.5		C14—C13—C12		121.41 (10)
O1—C4—C1	102.44 (8)		С14—С13—Н13		119.3
O1—C4—C2	109.60 (9)		С12—С13—Н13		119.3
C1—C4—C2	111.41 (9)		C13—C14—C9		119.13 (11)
O1—C4—C3	108.99 (9)		C13-C14-H14		120.4
C1—C4—C3	111.22 (9)		C9-C14-H14		120.4
C2—C4—C3	112.66 (10)		C12—C15—H15A		109.5
O2—C5—O1	125.85 (10)		C12—C15—H15B		109.5
O2—C5—C6	122.05 (9)		H15A—C15—H15B		109.5
O1—C5—C6	112.09 (9)		С12—С15—Н15С		109.5
O3—C6—C5	109.87 (8)		H15A—C15—H15C		109.5
O3—C6—C7	108.58 (8)		H15B-C15-H15C		109.5
C5—C6—C7	110.83 (8)		C7—N1—S1		123.52 (7)
O3—C6—H6	109.2		C7—N1—H1D		116.2 (10)
С5—С6—Н6	109.2		S1—N1—H1D		112.5 (10)
С7—С6—Н6	109.2		C5-01-C4		119.50 (8)
N1—C7—C8	114.28 (9)		С6—О3—Н3		109.5
N1—C7—C6	105.79 (8)		O5—S1—O4		120.06 (5)
C8—C7—C6	110.98 (9)		O5—S1—N1		107.61 (5)
N1—C7—H7	108.5		O4—S1—N1		105.57 (5)
С8—С7—Н7	108.5		O5—S1—C9		108.09 (5)
С6—С7—Н7	108.5		O4—S1—C9		106.33 (5)
С7—С8—Н8А	109.5		N1—S1—C9		108.80 (5)
02	2.43 (14)		S1—C9—C14—C13		178.17 (9)
O1—C5—C6—O3	-178.31 (8)		C8—C7—N1—S1		-76.81 (11)
O2—C5—C6—C7	122.43 (11)		C6-C7-N1-S1		160.79 (7)
O1—C5—C6—C7	-58.31 (11)		O2—C5—O1—C4		-6.69 (15)
O3—C6—C7—N1	67.16 (10)		C6—C5—O1—C4		174.08 (8)
C5—C6—C7—N1	-53.61 (11)		C1-C4-01-C5		-178.29 (9)
O3—C6—C7—C8	-57.32 (11)		C2-C4-01-C5		63.33 (12)
C5—C6—C7—C8	-178.09 (9)		C3—C4—O1—C5		-60.39 (12)
C14—C9—C10—C11	1.46 (16)		C7—N1—S1—O5		-33.34 (10)
S1—C9—C10—C11	-177.12 (8)		C7—N1—S1—O4		-162.69 (8)
C9—C10—C11—C12	-1.07 (17)		C7—N1—S1—C9		83.54 (9)
C10-C11-C12-C13	-0.37 (17)		C14—C9—S1—O5		15.26 (11)
C10-C11-C12-C15	179.70 (10)		C10—C9—S1—O5		-166.16 (9)
C11—C12—C13—C14	1.47 (17)		C14—C9—S1—O4		145.40 (9)
C15-C12-C13-C14	-178.60 (11))	C10—C9—S1—O4		-36.01 (10)
C12—C13—C14—C9	-1.10 (18)		C14—C9—S1—N1		-101.32 (10)
C10-C9-C14-C13	-0.39 (17)		C10—C9—S1—N1		77.26 (9)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1D····O2 ⁱ		0.842 (16)	2.059 (16)	2.8625 (12)	159.5 (14)

O3—H3…O4 ⁱ	0.84	2.40	3.2041 (12)	162
C1—H1C····O4 ⁱⁱ	0.98	2.54	3.4936 (14)	164
Symmetry codes: (i) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; (ii) - <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +2.				

Fig. 1

Fig. 2